
IC3K 2014

Towards an Ontology of Software

Nicola Guarino
ISTC-CNR Laboratory for Applied Ontology

Trento, Italy

!Joint work with Xiaowei Wang, Giancarlo Guizzardi, and John Mylopoulos

Oct. 22th 2014
1

A motivating example
• Microsoft Word celebrated its 30th anniversary last

year.
• Of course, it changed a lot in these years.
• Still, we say it is the same software. Why?
• Indeed, software changes all the time! (And we know

very well how costly software changes are!)
• To address problems caused by software change, we

need to understand what software change is.

• Only by providing the identity conditions of software,
we can start to answer certain questions about
software change in a formal way.

2

Main goals
An ontology of software
• Clarify software related concepts in a requirements

engineering framework

3

Software as a bridge between abstract and concrete

An ontology-driven software configuration management
system
• Provide a a solid semantics for software change rationale

L. J. Osterweil, “What is software?,” Autom. Softw. Eng., vol. 15, no. 3–4, pp. 261–273, 2008.

Different software notions
• General notion [Osterweil, 08]
 Software is something non-physical and intangible used to
manage and control tangible entities (e.g. recipes).
!
• Specific notion of computer software
 Four kinds of entities are discussed in the literature:
1) code, a set of computer instructions;
2) copy, physical embodiment of a set of instructions;
3) medium, a physical body which manifests the
embodiment
4) process, the result of processing a software copy by
executing its code.

4

N. Irmak, “Software is an Abstract Artifact,” Grazer Philos. Stud., vol. 86, no. 1, pp. 55–72, 2013.
Baker, L.R.: The ontology of artifacts. Philos. Explor. 7, 99–111 (2004)

Software as Artifact
• Irmak [2013] states that software is an abstract artifact

constituted by code, but different from code (and
also different from copy, medium, or process).
!

• Constitution relation [Baker 2004]: when a certain
aggregate of things exhibits an emerging essential
property, a new entity (co-located with the previous one)
comes into being
• e.g, a statue is constituted by a lump of clay

• What is the emerging essential properties of artefacts?
• having a proper function ascribed, as a result of an

intentional process
• note: the artefact is not required to perform its proper

function

5

Our contribution
• We also treat software as an artifact, but attempt to

answer Irmak’s open question “what are the identity
conditions for software?”
!

• We ground our answer in the practice of software
engineering (and specifically, requirements engineering)

• As a result, we distinguish different kinds of software
artifacts on the basis of their different identity conditions:
o Software product
o Software application
o Software system
o Software program

6

Code vs Program
!

• A piece of code need not be an artifact
 (think of a monkey, randomly pressing a keyboard)
!
• A program must be an artifact
 We need to have a purpose for it.
 (i.e., at least a functional specification)

7

What is a Bug
We can NOT say a code has a bug, as long as it is
accepted by a computer. The computer just loyally
parses the code and executes the instructions.
!

We CAN say a program has a bug, as the execution
result of the program could be something other than its
specification.

8

What is a Bug
• Program1: print the value of variable a
• Code1: Int a=0, b=1; print b;
• Code2: Int a=0, b=1; print a;
!
• Both codes are correct for he computer.
• For the human, the program is buggy when it is

constituted by Code1, and it becomes correct
when Code 1 is substituted by Code 2.

9

From Ontological Analysis  
to Software Engineering

!
• It is human intention that makes a program an

artifact different from code; a program is an artifact
constituted by code.
!

• Capturing the intentions in software artifacts requires
looking at Software Engineering (SE), and particularly
Requirement Engineering (RE).
!

• So we answer identity questions coming from formal
ontology by looking at SE practice.

10

C. A. Gunter, M. Jackson, and P. Zave, “A reference model for requirements and specifications,”
Software, IEEE, vol. 17, pp. 37–43, 2000

11

Jackson and Zave’s Theory:  
Different Kinds of Intentions in SE

Machine
Phenomena

World
Phenomena

Problem Domain Solution Domain

R W PS M R: Requirements
W: World assumption
S: Specification
M: Programming platform
P: Program
!
!
W, S|=R
M, P|=S

R
W

PS
M

12

Jackson and Zave’s Theory:  
Different Kinds of Intentions in SE

R
W

SiSe
M

P

R: Requirement
W: World assumption
M: Machine assumption
Se: External Specification
Si : Internal Specification
P: Program Specification

Software
Product

Software
Application

Software
System

Software
Program

W, Se |=R
M, Si |= Se
P |= SI

A Preliminary Ontology of Software

HOW TO DO WHAT TO DO
13

The Specific Categories

14

Code Base
• Nature: Sequence of instructions
• Identity criterion: Syntactic Expression(a well-formed

sequence of instructions in a Turing-complete
language).

• Two code bases are identical iff they are

syntactically the same.
• New code bases are created from changes

including variable renaming, order changes in
declarative definitions, inclusion and deletion of
comments, etc.

15

Software Program

16

• Nature: Artifact constituted by a code base
• ID condition: Specified data structure, functional

change in data structure, and algorithm inside the
computer (Program Specification)

• Example: Minimum Spanning Tree (MST-Prim)

a

b

e

c

f

d

34 12

19 26

46

17

3825 25

Software System
• Nature: Artifact constituted by software program
• ID condition: Specified functional changes in data

structure inside the computer (Internal Specification)
• Example: Minimum Spanning Tree

a

b

e

c

f

d

34 12

19 26

46

17

3825 25

a

b

e

c

f

d

34 12

19 26

46

17

3825 25

17

Software Application
• Nature: Artifact constituted by a software system
• ID condition: specified behavioral constraints at the

interface with the environment (external
specification)

18

Software Product
• Nature: Artifact constituted by a software application
• ID condition: specified (or just desired) behavioral

constraints in the external environment (high level
requirements)
!

Example:
determine the most  
economic way 
to connect a set of  
routers (minimizing 
cable length)

19

Software as a Bridge between Abstract
and Concrete

minimize
amount of
cable input

output

20

The social dimension:  
new kinds of software emerging
Software products usually come to the market in the form of
service offerings.
!
• A service is a social commitment [Ferrario&Guarino 2009].
• Service offerings are meta-commitments, which are

commitments to engage in specific commitments once
a contract is signed (e.g. the delivery of certain services).
!

• Before the contract is signed we have another software
entity emerging: a Licensable Software Product.

• After the contract is signed, we have a Licensed Software
Product.

21

Towards ontology-­‐‑driven software
configuration management

22

Dart, S.: Concepts in Configuration Management Systems. Proceedings of the 3rd International
Workshop on Software Configuration Management. pp. 1–18. ACM, New York, NY, USA (1991)

Software Configuration
Management

Dart [1991]: Software Configuration Management is “a
discipline for controlling the evolution of software
systems”, and two basic notions about version are
explain through our ontology.
!
• Revision Process

o From: Program p1 constituted by Code Base c1 at time t
o To : Program p1 constituted by Code Base c2 at time t’

• Variant Process
o From: Software system s1 constituted by Program p1 at time t
o To 1) : Software system s1 constituted by Program p1 at time t’
o To 2) : Software system s2 constituted by Program p2 at time t’

23

Accounting for Software
Change Rationale

• The ontological distinctions above help to
understand where (and why, more or less) software
changes occur.
!

• These changes can be reflected in an ontology-
driven versioning system.
e.g. v 1.5.3.2 :
o 1 - software application release number;
o 5 – software system release number;
o 3 – software program release number;
o 2 – code release number.

24

Accounting for Software
Change Rationale

!
• The ontology-driven versioning system above

provides the possibility of developing new software
versioning control tools describing software changes
with a solid semantics.
!

• Traditional tools only focus on code changes, but
according to our work, software could be
consistently expressed and tracked at multiple
abstraction layers (e.g. code, program, software
system, software application, software product). 

25

Accounting for Software
Change Rationale

Refactoring refers to the creations of new codes,
keeping the identity of the program;

Re-engineering refers to the creations of new
programs, keeping the identity of the software system;

Software evolution refers to the creations of new
software systems, keeping the identity of the software
(product). 

26

Conclusions
• We provided a preliminary ontology of software that

establishes a link between a formal ontology of
artifacts and the practice of software engineering.
!

• Such ontology has layered structure based on the
constitution relation.
!

• We are planning to exploit this results of a new
generation software configuration management
system.

27

