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Overview

• Privacy Learning Library
• Efficient Privacy-Preserving Collaborative 

Compiler System Using Scalar Product
• Social Computing
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What Data Mining Is
• Data mining is the process of automatically 

discovering useful knowledge in large databases.

Input
Data

Knowledge
Preprocessing Postprocessing

Wal-Mart customer 
transaction data Data Mining We may discover the rule

{Diapers}        {Beer}
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A Trusted-Party Model

User 1 User 2
User n-1 User n

Data Mining

Trusted Party
Central Database
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Privacy Protection

Data Mining Data Mining

Central Database

User 1                                   User n

Data Collection Data Collection

Data Disguising

User 1                                 User n
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Randomized Response Techniques

• An example:
Survey: how many people have ever driven while 

intoxicated?
• People may not want to divulge their information 
• How to conduct such a survey?
• Two related questions are asked for each person

1. Is it true that you have ever driven while intoxicated? 
2. Is it true that you haven’t ever driven while intoxicated? 

• Each person randomly selects one question to answer
– Probability of selecting question 1 is .
– Probability of selecting question 2 is (1 - ).
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How Randomized Response Works

P*(A = yes) = P(A = yes) + P(A=no)(1- )    (1)
P*(A = no)  =  P(A = no) + P(A=yes)(1- )   (2)

• P*(A = yes) and P*(A = no): directly count the disguised data.
• P(A = yes): The percentage of people who have driven while 

intoxicated.
• Solving Eq. (1) and (2), we get P(A = yes).
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Experimental Results
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Why PPDM is Important
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Biomedical Computing

General Hospital Montfort Hospital

Civic Hospital Riverside Hospital

Data Mining on 
patient records involving

in all the hospitals
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Government Collaboration (NATO)

US UK

France Canada

Data Mining over joint 
data related terrorism
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Privacy-Preserving Collaborative 
Data Mining

Party 1

Party 3
Party 4

Party 2
Data: Joint data

Privacy: To ensure the data of any party, which is 
not supposed to share with other parties, not to 

be disclosed.
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Data Mining Tasks

Data
Mining

Association rule miningClassification Clustering …
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Classification

Learning
Algorithm

Learn
Model

Model

Apply
Model

Tid   Attrib1   Attrib2    Class    

Tid   Attrib1   Attrib2   Class    

1      Yes      Large      No
2      No       Medium   No
3      No       Large      Yes

4      No       Small      Yes

2      Yes      Large       ?

1      No       Large        ?

Test Set

Training Set

Learning

Prediction
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Clustering

The data objects
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Clustering

Two clusters
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Association Rule Mining

Wal-Mart customer transaction data

Association Rule Mining

We may discover the rule
{Diapers}        {Beer}
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Association Rule Mining

TID Items

1             {Bread, Milk}

2             {Bread,  Diapers, Beer,  Eggs}

3             {Milk, Diapers, Beer, Coke}

4             {Bread, Milk, Diapers, Beer}

5             {Bread, Milk, Diapers, Coke}

An example of market basket transactions.

TID: Transaction ID
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Binary Representation

TID    Bread      Milk     Diapers    Beer       Eggs        Coke

1            1            1               0             0              0                 0

2            1            0               1             1              1                 0

3            0            1               1             1              0                 1

4            1            1               1             1              0                 0

5            1            1               1             0              0                 1

The List of Attributes
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Itemset
• Let                       be the set of all items in a store and                            

be the set of all transactions.
• Each transaction     contains a subset of items chosen from   
• In association rule mining, a collection of zero or more 

items is termed an itemset.
• If an itemset contains k items, it is called a k-itemset.

},,{ 21 diiiI 
},,,{ 21 NtttT 

it I

{Beer, Diapers, Milk} 3-itemset
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Association Rule
• An association rule is an expression of the form 

X       Y, where X and Y are different sets of items.

{Bread}        {Beer}

The strength of an association rule

Support Confidence
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Support and Confidence
• Support determines how often a rule  can be 

applied to a given data set.
• Confidence determines how frequently items in Y 

appear in transactions that contain X.

)Pr(
)Pr()(,

)Pr()(,

X
YXYXcConfidence

YXYXsSupport



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Given a set of transactions T, find all the rules having support       
minsup, and confidence     minconf, where minsup and minconf

are the corresponding support and confidence thresholds.




To enable multiple parties to conduct association
rule mining over their joint data sets without 
disclosing their private data.
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Horizontal Collaboration

TID    Bread      Milk     Diapers    Beer       Eggs        Coke

1            1            1               0             0              0                 0

2            1            0               1             1              1                 0

3            0            1               1             1              0                 1

4            1            1               1             1              0                 0

5            1            1               1             0              0                 1

Alice

Bob
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Vertical Collaboration

TID  Bread   Milk   Diapers

1       1          1          0

2       1          0          1

3       0          1          1  

4       1          1          1 

5       1          1          1

TID  Beer    Wine

1       1          0          

2       1          1  

3       0          1   

4       1          1  

5       1          1  

Alice Bob

Store 1                                                                     Store 2
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Association Rule Mining Algorithm
[Agrawal et al. 1993]

1. = large 1-itemsets
2.  for                                           do begin
3. 
4.         for all candidates do begin
5.              compute c.count
6.         end
7. 
8. end
9. Return 

1L

);;2( 1   kLk k 
)( 1 kk LgenaprioriC

kCc

sup}min.|{  countcCcL kk

kk LL 

c.count is the frequency count for a given itemset.

Key issue: to compute the frequency count, we needs to  
access attributes that belong to different parties.
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Frequent Itemset Generation
Minimum support count = 3

Candidate
1-Itemsets

Item     Count
Beer         3

Bread       4
Coke        2

Diapers     4

Milk          4
Eggs        1

Candidate
Large 1-Itemsets

Item      Count
Beer         3

Bread       4

Diapers     4

Milk          4

REMOVED
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Frequent Itemset Generation

Candidate
Large 1-Itemsets

Item       Count
Beer         3

Bread       4

Diapers     4

Milk          4

Candidate
2-itemsets

Itemset              Count

{Beer, Bread}              2

{Beer, Diapers}           3

{Beer, Milk}                 2  

{Bread, Diapers}         3  

{Bread, Milk}               3
{Diapers, Milk}            3

Minimum support count = 3
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Frequent Itemset Generation

Candidate
2-itemsets

Itemset              Count

{Beer, Bread}              2

{Beer, Diapers}           3

{Beer, Milk}                 2  

{Bread, Diapers}         3  

{Bread, Milk}               3
{Diapers, Milk}            3

Candidate
Large 2-itemsets

Itemset              Count

{Beer, Diapers}           3

{Bread, Diapers}         3  

{Bread, Milk}               3

{Diapers, Milk}            3

REMOVED

Minimum support count = 3
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An Example
• c.count is the vector product.
• Let’s use A to denote Alice’s attribute 

vector and B to denote Bob’s attribute 
vector.

• AB is a candidate frequent itemset, 
then c.count = A  B = 3.

• How to conduct this computation 
across parties without compromising 
each party’s data privacy?

A B

Alice               Bob

1

0

1

1

1

1

1

1

1

0
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Homomorphic Encryption 
[Paillier 1999]

• Privacy-preserving protocols are based on 
Homomorphic Encryption.

• Specifically, we use the following additive 
homomorphism property:

• Where e is an encryption function and       is 
the data to be encrypted and .

)()()()( 2121 nn mmmemememe  

im
0)( ime
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Digital Envelope
[Chaum85]

• A digital envelope is a random number (a set of 
random numbers) only known by the owner of 
private data.

V V + R V
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Frequency Count Protocol

• Assume Alice’s attribute vector is A and Bob’s attribute 
vector is B.

• Each vector contains N elements.
• : the ith element of A.
• : the ith element of B.
• One of parties is randomly chosen as a key generator, 

e.g, Alice, who generates (e, d) and an integer X > N.  e 
and X will be shared with Bob.

• Let’s use e(.) to denote encryption and d(.) to denote 
decryption.   

iA

iB
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Step 1

……

Alice

XRA  11

Digital envelopes

XRA  22 XRA NN 

NRRR ,, 21  A set of random integers generated by Alice
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Step 1

XRA  22
XRA NN ……

Alice

)( 11 XRAe  )( 22 XRAe  )( XRAe NN ……

XRA  11
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Step 1

)( 22 XRAe  )( XRAe NN 
……)( 11 XRAe 

Alice

Bob
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Step 2

1111 )( BXRAeW  2222 )( BXRAeW  NNNN BXRAeW  )(…

Bob

)()(1
00

XRAeBXRAeWB
WB

iiiiiii

ii



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Step 3
• Bob multiplies all the       for those       that are 

not equal to 0. In other words, Bob computes 
the multiplication of all non-zero      , e.g.,                 
where           . 

sWi
sBi

sWi  iWW

0iW

jWWWW  21
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jWWWW  21

])([])([])([ 222111 jjj BXRAeBXRAeBXRAe  
||

1

||

1

||

1
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jWWWW  21

]1)([]1)([]1)([ 2211  XRAeXRAeXRAe jj
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jWWWW  21

)()()( 2211 XRAeXRAeXRAe jj  

))(( 2121 XRRRAAAe jj  
According to the property of homomorphic encryption
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Step 4
• Bob generates an integer  . 

• Bob then computes

'R

)'(' XReWW 

Alice

))'(( 2121 XRRRRAAAe jj  

According to the property of homomorphic encryption
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The Final Step
• Alice decrypts      and computes modulo X.
• She then obtains the frequency count.

XWdcountc mod)'(. 

'W
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The Final Step

XXRRRRAAAed
countc

jj mod)))'(((
.

2121  
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The Final Step

0mod))'((

)(

21

21





XXRRRR

XNAAA

j

j





XXRRRRAAA
countc

jj mod))'((
.

2121  

jAAA
countc

 21

.
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Correctness Analysis 

jAAAcountc  21.

)(,1 21 ji AAAB  When                                    gives the total number of times that 
both       and      are 1s.

Therefore, the frequency count is correctly computed.

iA iB

1
1



i

i

A
B  countc.
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Privacy Analysis

• All the information that Bob obtains from Alice is
.

• Since Bob doesn’t know the decryption key d, 
he cannot get Alice’s original data values.

)(,),(),( 2211 XRAeXRAeXRAe NN  

Goal: Bob never sees Alice’s data values.
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Privacy Analysis

The information that Alice obtains from Bob is 
for those       .

Alice computes                     . She only obtains the frequency
count and cannot know Bob’s original data values.

XWd mod)'(

))'((' 2121 XRRRRAAAeW jj   1iB

Goal: Alice never sees Bob’s data values.
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Complexity Analysis

)1( N where N is the total number transactions and      is 
the number of bits for each encrypted element.

Linear in the number of transactions

The total number elements in each attribute vector
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Complexity Analysis

The computational cost is (10N + 20 + g) where N is the total number
transactions and g is the computational cost for generating a key pair.

Linear in the number of transactions
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Other Privacy-Oriented Protocols
Multi-Party Frequency Count Protocol

Multi-Party Summation Protocol

Multi-Party Comparison Protocol

Multi-Party Sorting Protocol

[Zhan et al. 2005 (a)]

[Zhan et al. 2005 (f)]

[Zhan et al. 2006 (a)]

[Zhan et al. 2006 (a)]
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Our Contributions

• A formal definition of privacy for privacy-preserving collaborative 
data mining.

• Solutions for data mining tasks for both horizontal collaboration and 
vertical collaboration.

• Simulation with various factors including the number of parties 
involved in the computation, the encryption key size and the size of 
data set, etc.

Association Rule Mining [Zhan et.al.2004(a), Zhan et.al. 2004(b)].
Sequential pattern mining [Zhan et. al.2004(c), Zhan et. al. 2005 (a)].
Naïve Bayesian classification [Zhan et. al.2004(d), Zhan et. al.2005 (b)].
Decision tree classification [Zhan et. al. 2005 (a)-(b)].
k-nearest neighbor classification [Zhan et. al. 2005 (c)-(d)].
Support vector machine classification [Zhan et.al. 2008 (e) - (f)].
Clustering [Zhan et. al.2005 (g), Zhan et. al. 2008(a)].
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Efficient Privacy-Preserving Collaborative 
Compiler System Using Scalar Product



55

Approach

Secure
Inv. Comm. Poly. Res. FP.

Information-
theoretically 

secure

Computationally
secure
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Execution Time
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Future Works

• Social Computing (IEEE SocialCom)
• http://www.iisocialcom.org/conference/social

com2009/
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